
Draf
t

Large Synoptic Survey Telescope (LSST)
Telescope & Site

Control Software Architecture

Tiago Ribeiro, William O’Mullane, Tim Axelrod, Dave Mills

LSE-150

Latest Revision: 2019-02-25

Draft RevisionNOTYETApproved – This LSSTdocumenthasbeenapprovedasaContent-Controlled

Document. Its contents are subject to configuration control and may not be changed, altered,

or their provisions waived without prior approval. If this document is changed or superseded,

the new document will retain the Handle designation shown above. The control is on the most

recent digital document with this Handle in the LSST digital archive and not printed versions. –

Draft Revision NOT YET Approved

Abstract

TSS Architecture and approach.

LARGE SYNOPTIC SURVEY TELESCOPE

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

Change Record

Version Date Description Owner name
1 2012-12-14 V1 German Schumacher

2019-01-20 Unreleased. William O’Mullane, Tim
Axelrod

2019-02-01 Unreleased. Tiago Ribeiro
2019-02-11 Unreleased. Adds comments from reviewers.

Add missing Figure and update AT architec-
ture figure. Re-organize sections a bit, added
OCS section. Writeup of SoftwareDeployment
Strategy.

Tiago Ribeiro

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

ii

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

Contents

1 Introduction 1

2 System Architecture 1

2.1 SalObj - Python and scripting . 3

2.2 Hardware interface components . 4

2.3 Pure software components . 5

2.4 Configuration Management . 5

3 Observatory Control System 7

3.1 The ScriptQueue component . 7

3.2 The Watcher . 8

3.3 High level Control Systems . 9

4 Software Deployment Strategy 9

A References 11

B Acronyms used in this document 12

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

iii

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

Control Software Architecture

1 Introduction

The LSST Control Software contains the overall control aspects of the survey and the telescope
including the computers, network, communication and software infrastructure. It contains
all work required to design, code, test and integrate, in the lab and in the field, the high level
coordination software.

2 System Architecture

The LSST control system is based on a reactive data-driven actor-based architecture that uses
amulti cast Data Distribution Service (DDS) messaging protocol middleware. A high level view
of this architecture is given in Figure 1, where each box corresponds to a component of the
system (not all components are displayed here).

The LSST System Architecture is comprised mainly of;

• The Service Abstraction Layer (SAL1) communication middleware. Based on the DDS
protocol, it provides interfaces for all the project adopted programming languages (Lab-
View, C++, Java and Python).

• Engineering and Facility Database (EFD).

• SAL-aware reactive components, a.k.a Commandable SAL Components (CSCs).

• LSST Operators Visualization Environment (LOVE).

The SAL middleware is the backbone of the LSST system architecture. It is a high level layer
on top of Data Distribution Service (DDS), a standard message passing system. LSST uses the
PrismTech OpenSplice DDS library, community edition. It implements three distinct types of
messages; Commands, Events and Telemetry, with distinct purposes. Commands are sent
to a specific component, which must acknowledge its receipt and perform some action. In
general, the receiving component will be the only entity listening for the commands it ac-
cepts2. Events and Telemetry are messages broadcast by components to the middleware

1https://docushare.lsstcorp.org/docushare/dsweb/Get/Document-21527/
2But note that the EFD, for instance, will also be listening for commands, though it will not acknowledge them.

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

1

https://docushare.lsstcorp.org/docushare/dsweb/Get/Document-21527/

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

Figure 1: High Level Architecture Diagram. (To be replaced...)

and are available to any entity on the system to receive. The distinction between Events and
Telemetry is that Events are output when conditions change, whereas Telemetry is output at
semi-regular intervals. As such, it is much more important that Events be transmitted reliably
than Telemetry. We cannot afford to lose any events, but we can lose occasional Telemetry.
Thus Events are sent using a higher Quality of Service (QoS).

The EFD is responsible for capturing all SALmessages broadcasts to themiddleware (including
Commands, Events and Telemetry) and storing that information into a database.

CSCs are the main actors of the LSST system architecture. They are responsible for managing
the incoming traffic of data and take appropriate actions, controlling hardware (e.g. M1M3,
M2, Mount Controller, etc in Fig. 1), software (e.g. Optics Controller Reconstructor, DMCS
Interface, etc in Fig. 1) or even other CSCs (e.g. ScriptQueue, TCS, ATCS, OCS, etc in Fig. 1).

LOVE is responsible for capturing SAL messages and displaying them in a useful way for gen-
eral users, providing some basic interface to query and analyze data from the EFD, an inter-
face to issue pre-defined commands to a set of components and user interaction with the
ScriptQueue (see Sect. 3.1).

The SAL processes XML based definitions of the Commands, Events, and Telemetry for each
CSC. Using this information, it creates runtime objects which support themessaging required.
These take the form of shared libraries (C++, Python, LabVIEW) or Jar archives (Java) which im-
plement consistent namespaces and API’s. Other assets such as Simulated data, Sql table

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

2

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

definitions, and web based documentation, may also be generated. On top of these low level
APIs, developers have access to two higher-level set of frameworks; Python SalObj3 library
and the LabVIEW component template. No higher level framework is supported for imple-
mentations in Java or C++.

Overall, the system architecture can be divided into three main namespaces; Observatory,
Main Telescope (MT) and Auxiliary Telescope (AT). The Observatory is the highest level and
encapsulates both the Main Telescope, Auxiliary Telescope and global components such as
the weather station, DIMM, etc. The complete set of components that belong to each of these
namespaces can be seen in Figs. 2, 3 and 4.

(preliminary) High level overview of Observatory Architecture V0.0 Feb 8, 2019

Observatory

Namespace

MTQueue

CSC

MainTelescope

Namespace

ATQueue

CSC

AuxiliaryTelescope

Namespace

Watcher

CSC

EnvironmentCS

Namespace

Figure 2: Hi level observatory architecture with namespaces and observatory-wide CSCs.
(preliminary)

Auxiliary Telescope Architecture V6.0 Feb 8, 2019

AT_TCS

Namespace

ATMCS

CSC

ATPneumatics

CSC

Hexapod

CSC

ATDome

CSC

ATPointingComponent

CSC

ATAOS

CSC

ATSpectrograph

CSC

atFiberSpectrometer

CSC

ATMonochromator

CSC

ATWhiteLightSource

CSC

ATWhiteLightChiller

CSC

Electrometer

CSC

atBuilding

CSC

ATHeaderService

CSC

ATArchiver

CSC

AuxiliaryTelescope

Namespace

ATCamera

Namespace

atScheduler

CSC

ATCalSys

Namespace

ATCCS

CSC

Figure 3: Complete set of AT CSCs (preliminary)

2.1 SalObj - Python and scripting

provides a high level interface

SalObj is a Python library provides a pythonic and object-oriented interface for SAL compo-
3https://github.com/lsst-ts/ts_salobj

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

3

https://github.com/lsst-ts/ts_salobj

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

Main Telescope Architecture V2.1 Nov 10, 2018

MTMount

Vendor: Tekniker

XML repo: https://github.com/lsst-ts/ts_xml/tree/feture/AuxTelCSCs/sal_interfaces/AtMCS

Code repo:

ICD: https://ls.st/LTS-159

CSC generic cmds

moveToTarget

trackTarget

enableCamWrap

disableCamWrap

openMirrorCover

closeMirrorCover

stopMount

clearerror

MCS_HW

MCS

Hexapod

Vendor: Moog

XML repo:

Code repo: https://github.com/lsst-ts/ts_atm2hexapod

ICD: LTS-160

CSC generic cmds

Move

MoveLUT

Pivot

Offset

Stop

PositionSet

ConfigureLimits

ConfigureVelocity

ConfigureAcceleration

ConfigureElevationRawLUT

ConfigureAzimuthRawLUT

ConfigureTemperatureRawLUT

Hexapod_HW

M2 Hexapod

Camera Hexapod

Dome

XML repo: https://github.com/lsst-ts/ts_xml/tree/master/sal_interfaces/Dome

Code repo:

ICD: https://ls.st/LTS-158

Vendor: EIE

CSC generic cmds

Crawl

Move

Park

SetLouvers

CloseShutter

OpenShutter

StopShutter

DomeLWS

XML repo: https://github.com/lsst-ts/ts_xml/tree/master/sal_interfaces/Dome

Code repo:

ICD: https://ls.st/LTS-158

Vendor: EIE

CSC generic cmds

DomeADB

XML repo: https://github.com/lsst-ts/ts_xml/tree/master/sal_interfaces/Dome

Code repo:

ICD: https://ls.st/LTS-158

Vendor: EIE

CSC generic cmds

DomeTHCS

XML repo: https://github.com/lsst-ts/ts_xml/tree/master/sal_interfaces/Dome

Code repo:

ICD: https://ls.st/LTS-158

Vendor: EIE

CSC generic cmds

DomeMONCS

XML repo: https://github.com/lsst-ts/ts_xml/tree/master/sal_interfaces/Dome

Code repo:

ICD: https://ls.st/LTS-158

Vendor: EIE

CSC generic cmds

DomeAPS

XML repo: https://github.com/lsst-ts/ts_xml/tree/master/sal_interfaces/Dome

Code repo:

ICD: https://ls.st/LTS-158

Vendor: EIE

CSC generic cmds

DomeLouvers

XML repo: https://github.com/lsst-ts/ts_xml/tree/master/sal_interfaces/Dome

Code repo:

ICD: https://ls.st/LTS-158

Vendor: EIE

CSC generic cmds

Dome_RotatingHW

Dome Rotating Part cRIO

Dome_FixedHW

Dome Fixed Part cRIO

DomeTrajectory

XML repo:

Code repo:

ICD:

CSC generic cmds

MTM1M3

XML repo:

Code repo:

ICD:

CSC generic cmds

MTM1M3_HW

MTM1M3 cRIO

Thermocouples

Accelerometers

IOTA

XML repo:

Code repo:

ICD:

CSC generic cmds

IOTA_HW

High Speed CMOS Camera

SHWFS

LaserTracker

XML repo:

Code repo:

ICD:

CSC generic cmds

LaserTracker_HW

LaserTracker

Guider

XML repo:

Code repo:

ICD:

CSC generic cmds

DAQ

DAQ_HW

TCS_Network

OCS_Network

CCS_Network

CalCS

XML repo:

Code repo:

ICD: LSE-139

CSC generic cmds

TunableLaser

XML repo:

Code repo:

ICD:

CSC generic cmds

WhiteLightSource

XML repo:

Code repo:

ICD:

CSC generic cmds

PhotoDiodes

XML repo:

Code repo:

ICD:

CSC generic cmds

SEDSpectrograph

XML repo:

Code repo:

ICD:

CSC generic cmds

CalibrationScreen

XML repo:

Code repo:

ICD:

CSC generic cmds

CBP

XML repo:

Code repo:

ICD:

CSC generic cmds

TunableLaser_HW

TunableLaser#1

TunableLaser#2

WhiteLightSource_HW

WhiteLightSource

PhotoDiodes_HW

PhotoDiodes

SEDSpectrograph_HW

SEDSpectrograph

CalibrationScreen_HW

CalibrationScreen

CBP_HW

Collimated Beam Projector

MTM2

Vendor: Harris

XML repo:

Code repo:

ICD: LTS-162, CR-0130

CSC generic cmds

ApplyForces

PositionMirror

m2_HW

m2_controller

m2_cRio

EEC

XML repo:

Code repo:

ICD:

CSC generic cmds

CVAC

Chillers

AirHandlineUnits

CVACSensors

Fans

Valves

EMCS

XML repo:

Code repo:

ICD: LSE-139

CSC generic cmds

environmental_monitoring_HW

Seismic_Monitors

Anemometers

Visible_All-Sky Camera

Infrared_All-Sky Camera

Weather_Station

GPS_Water_Vapor_Monitor

DIMM

XML repo:

Code repo:

ICD: LSE-139

CSC generic cmds

DIMM_HW

DIMM_(Astelco)

LOVE

Vendor: INRIA

XML repo:

Code repo:

ICD:

Req: LTS-807

CSC generic cmds

Visualization_HW

Visualization Server

Displays

Rotator

Vendor: Moog

XML repo:

Code repo:

ICD: LTS-160

CSC generic cmds

Move

MoveConstantVelocty

Track

Stop

TrackStart

PositionSet

VelocitySet

Rotator_HW

Rotator

AOCLC

XML repo:

Code repo:

ICD:

CSC generic cmds

MTWEP

XML repo: https://github.com/lsst-ts/ts_xml/tree/develop/sal_interfaces/MTWEP

Code repo: https://github.com/lsst-ts/ts_tcs_wep

ICD: https://ls.st/LSE-67

ICD: https://ls.st/LTS-163

CSC generic cmds

MTOFC

XML repo: https://github.com/lsst-ts/ts_xml/tree/develop/sal_interfaces/tcsOfc

Code repo: https://github.com/lsst-ts/ts_tcs_ofc

ICD: https://ls.st/LTS-163

CSC generic cmds

MTHeaderService

Vendor: DM

XML repo: https://github.com/lsst-ts/ts_xml/sal_interfaces/atHeaderService

Code repo: https://github.com/lsst-dm/HeaderService

ICD: https://ls.st/LSE-72

CSC generic cmds

MTArchiver

Vendor: DM

XML repo: https://github.com/lsst-ts/ts_xml/sal_interfaces/atArchiver

Code repo: https://github.com/lsst/ctrl_iip

ICD: https://ls.st/LSE-72

CSC generic cmds

MTArchiver_HW

MTArchiver_CCS_Bridge

Data Processor

DataBackbone

DataBackbone

CatchupArchiver

Vendor: DM

XML repo: https://github.com/lsst-ts/ts_xml/sal_interfaces/atArchiver

Code repo: https://github.com/lsst/ctrl_iip

ICD: https://ls.st/LSE-72

CSC generic cmds

OCS_DrivenBatch

Vendor: DM

XML repo:

Code repo:

ICD: https://ls.st/LDM-230

CSC generic cmds

EFD_TransformationService

Vendor: DM

XML repo:

Code repo:

ICD: https://ls.st/LDM-230

CSC generic cmds

MTTCS

XML repo: atcs

Code repo: https://github.com/lsst-ts/ts_atcs

ICD: https://ls.st/LSE-73

ICD_differs_for_AT?

Language: LabView

CSC generic cmds

Target

Offset

SpectrographSetup

MTPointingComponent

Vendor:Observatory_Sciences_Ltd

XML repo:

Code repo:

ICD: https://ls.st/LTS-583

Requirements, not ICD

Language:

CSC generic cmds

trackTarget

startTracking

stopTracking

cmds from LTS-583

MTCamera

XML repo: https://github.com/lsst-ts/ts_xml/sal_interfaces/atcamera

Code repo:

ICD: https://ls.st/LSE-71

CSC generic cmds

takeImages

initImage

discardRows

startImage

disableCalibration

initGuiders

enableCalibration

endImage

abort

clear

CCS_OCS_Bridge

XML repo:

Code repo:

ICD:

cmds?

CCS

CCS

OCS

XML repo: https://github.com/lsst-ts/ts_xml/sal_interfaces/ocs

Code repo: https://github.com/lsst-ts/ts_ocs_executive

ICD: https://ls.st/LSE-71

Language: java

CSC generic cmds

sequence

script

Scheduler

XML repo:

Code repo: https://github.com/lsst-ts/ts_scheduler

ICD:

CSC generic cmds

TCS

EFD_SciencePlatform

Vendor: DM

XML repo:

Code repo:

ICD:

Proposal: https://dmtn-082.lsst.io

LEGEND

Boxes with thin edges are CSCs

Boxes with thick edges are hardware

CSCs communicate only through SAL

A green title box means "TS responsibility - significant functional capability"

A yellow title box means "TS responsibility - in progress"

A red title box means "TS responsibility - design phase"

A purple title box means "Vendor responsibility - significant functional capability"

An orange entry is flagged as missing or questionable

A grey box is hardware

CSC generic commands are: abort, disable, enable, enterControl, exitControl, setValue, standby, start, stop

Figure 4: Complete set of MT CSCs (preliminary)

nents such as CSCs and SAL scripts (see Sect. 3.1). The library defines two sets of base classes
that are mirror to each other, Remote and Controller. A Remote will send commands to and
receive telemetry and events from a specific component whereas a Controller will receive
commands and publish telemetry and events. SalObj also provides BaseCsc, a subclass of
Controller that handles the standard state transitions and is intended to be used as a parent
class for CSC.

Internally, SalObj uses the python library asyncio4 to handle the inherently asynchronous na-
ture of the SAL messaging system.

2.2 Hardware interface components

Probably the most critical or sensitive components of the LSST system architecture are those
that directly control hardware. Some of these components are going to be delivered directly
by external vendors, such as those that will control the main telescope mount (MTMount)
and the main telescope secondary mirror (MTM2). There are also those that are developed in
house, e.g. the main telescope M1M3 (MTM1M3).

In some special cases, where fast real time response is required, it is highly desirable that
the control software and hardware are part of an integrated system. For those systems, the

4https://docs.python.org/3/library/asyncio.html

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

4

https://docs.python.org/3/library/asyncio.html

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

components are developed either using the LabView component template, which is part of
the LSST infrastructure or in C++ developed using the low level SAL API.

In most other cases, the hardware comes with control software that can be easily interfaced
by using standard protocols (such as TCP/IP or serial ports), and there is no special need
for the component software to reside close to the low level hardware controller. In those
cases, the components are written in Python using the SalObj library which is also part of
the LSST infrastructure. By writing these components using a unified language and library
(Python+SalObj) we allow a high level of flexibility and maintainability of the software and
considerably decrease the development cycle.

2.3 Pure software components

In the LSST System Architecture there are a number of components that, even though they do
not control hardware directly, dictate what hardware components are supposed to do. Some
of these components are responsible for heavy computational routines, such as the Optical
Feedback Control (MTOFC), which is responsible for applying corrections to both M1M3, M2
and hexapod components for the main telescope or even the Scheduler, which is responsible
for processing an entire set of observatory telemetry information and history of observations
to compute an observing queue.

These pure software components are mostly written in Python using SalObj library. There
are three special cases of these components that form the basis of the LSST System Archi-
tecture; the ScriptQueue (Sect. 3.1), Control Systems (Sect. 3.3) and the Watcher (Sect. 3.2).
Together, they provide the tools needed for integration, commissioning and operation of the
observatory.

2.4 Configuration Management

During commissioning and operations, LSST will have a large number of running software
components under the purview of DM, Camera, and TSS. In general, the behavior of each
of these components is modifiable through configuration information which is read in during
startup of the component, or possibly changed while the component is running. Careful man-
agement of this configuration information is crucial to reliable functioning of the Observatory,
and to the analysis of its data products.

In this context, git is the solution adopted to store andmanage different sets of configurations

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

5

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

and different versions of configurations. Git is already a standard in industry as a software
management tool and has becoming increasingly used to manage general documents and
files as well, not to mention that it is already readily available and broadly adopted by the
project. Therefore, each component must be capable of handling a git-based configuration
repository.

These configuration repositories will be hosted on a configuration server at the summit so
that, even if communication with the base or the internet is not available, components still
maintain access to their configuration repositories. Different configuration sets (or labels)
are stored in separate branches, and tags can be created to specify immutable sets.

Several options for configuration file format, and their associated software tools, have been
considered. Each of the available options naturally has its strengths and weaknesses, and
none stand out as being particularly useful for all LSST use cases (and/or available for all the
project adopted programming languages).

For components written in Python, pex_config is the adopted solution. As an overview of
pex_config, here are a few snippets from the library documentation:

The lsst.pex.config module provides a configuration system for the LSST Sci-
ence Pipelines.... Configurations are hierarchical trees of parameters used to con-
trol the execution of code.... Configurations are stored in instances of a ”config”
object, which are subclasses of the Config class. Different configuration sets are
associated with different subclasses of Config. For example, in the task framework
each task is associatedwith a specific Config subclass.... Configuration objects have
fields that are discrete settings. These fields are attributes on config classes.

In the TSS context the ”task” above becomes a ”CSC”.

lsst.pex.config.Config class has methods save() and load() which persist and restore class
instances from files, which just contain Python code. Note that because these files are Python
code, it is easy to include documentation within the files.

The validation of a Config file is handled by the __init__() method of the Config subclass
which can check, for example, whether parameter values complywith range limits, or whether
all required parameters are specified.

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

6

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

In this framework, the configuration schema (or definition) will be developed and stored in the
CSC codebase repository (using pex_config). As already stated above, a separate repository
hosts the actual configuration files which, in the case of pex_config, only contains changes to
the default set of values.

3 Observatory Control System

The LSSTObservatory Control Systemconsist of a collection of specialized components, namely;
LOVE, the ScriptQueue, the Watcher and Control Systems. This distributed control system is
designed to efficiently and safely perform astronomical observations individually or through
automated scheduling. In this section we describe the role each of those components play in
enabling the LSST observatory operations.

3.1 The ScriptQueue component

There are a number of different ways users can interact with components in the LSST system.
For instance, one could easily use the SAL generated API in any of the supported languages to
send commands directly to a single or multiple components. It is also possible to use SalObj
Remotes to write Python scripts (e.g. SAL Scripts) that would command different components
to accomplish a specified task. Not to mention that LOVE itself provides a customizable inter-
face for users to interact with components.

During commissioning and operations the LSST system will require a high degree of coordi-
nation between different crews (different daytime and nighttime shifts, for instance), not to
mention the increasing number of available components and level of complexity as the system
ramps up. In order to manager those issues, the LSST control system contains a specialized
script queuing component, a.k.a. the ScriptQueue5.

The ScriptQueue defines BaseScript a Python base class which provides an interface for devel-
oping SAL scripts. As Python programs, these scripts have access to all Python functionality,
both from the native Python 3 language and through imported modules (including asyncio to
manage concurrent activities or libraries from the DM stack). In particular, a SAL Script has ac-
cess to all the system components using SalObj Remotes (Section 2.1) . Although Python is the
only language officially supported, scripts can be written in any SAL-supported language. As
long as they follow the interface defined by the ScriptQueue component, it should be possible

5https://github.com/lsst-ts/ts_scriptqueue

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

7

https://github.com/lsst-ts/ts_scriptqueue

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

to execute them.

3.2 The Watcher

TheWatcher is a component that monitors the other SAL components and output alarms in a
standard way that LOVE can present to operators. TheWatcher is designed in such a way that
alarm rules are easy to write and easy to understand. The rules are likely to evolve rapidly
during commissioning and slowly after that.

Examples of alarms published by the Watcher are;

• Dangerous weather, such as rain or high humidity.

• A SAL component is unavailable: not enabled or heartbeat is missing.

• Actuator malfunction, such as axis motors out of closed loop, filter changer stuck, an
actuator hits a limit.

• CCD temperatures or pressures out of range.

A typical life cycle of an alarm:

1. Azimuth goes out of range so the controller halts motion. The Watcher reports this as
an alarm with severity=serious. LOVE displays it.

2. An operator acknowledges the alarm to the Watcher, but the axis is still out of range.
The Watcher outputs a new version of the alarm that includes the information that the
alarm has been acknowledged. LOVE displays the alert in a way that looks less urgent
(e.g. is grayed out). The alarm has been acknowledged but the condition is still current.

3. An operator fixes the problem and the controller reports this. The Watcher reports the
alarm one last time with severity ”OK”. LOVE removes the alarm from the display.

A typical life cycle of a transient alarm:

1. The azimuth drive temporarily draws too much current; the component reports this but
manages to keep the axis moving (presumably with temporarily degraded accuracy).
The Watcher reports this as an alarm with severity=serious. LOVE displays it.

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

8

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

2. The drive current is within normal range again before an operator has time to acknowl-
edge the alarm. The Watcher outputs a new version of the alarm that says the condition
is now OK but the alarm has not yet been acknowledged (a ”stale alarm”). LOVE still
displays the alarm, but in different way to indicate that the problem is gone.

3. An operator acknowledges the alarm to theWatcher. TheWatcher outputs a new version
of the alarm with severity ”OK” and acknowledged=True. LOVE removes the alarm from
the display.

3.3 High level Control Systems

Given the distributed nature of the LSST system architecture it is not immediately clear that
a traditional hierarchical design, with centralized Control System, is necessary or even desir-
able. A completely flat architecture seems completely workable and certainly sufficient during
AIV and early commissioning. For example, consider a SAL Script which commands and se-
quences the telescope subsystems tomove to the next field to be observed, take an exposure,
and read out that exposure. The SAL Script can directly control each of those subsystems and
maintain control of the sequencing using asyncio. Furthermore, the complexity of the SAL
Script can be managed through normal modular programming techniques, in which subsys-
tem functionality is implemented through Python objects imported in modules.

As the system matures and knowledge is gathered about the intricate interdependencies of
the various subsystems, it is possible to realize that high level components, constantly moni-
toring the state of the observatory, can be responsible for some autonomous actions to safe-
guard operations. It is also possible to envision that some actions involving multiple compo-
nents (initially developed and conducted by SAL Scripts) can be incorporated to one of these
components. Henceforth, the role high level Control Systems will play in the Observatory
Control System is yet to be defined once the system has matured enough.

4 Software Deployment Strategy

The LSST software deployment strategy follows a continuous integration (CI) process to sup-
port development all the way to deployment, employing industry standard tools. Figure 5
shows a diagram with the process. This process applies to all software component of the
system infrastructure, from SAL and CSCs (regardless of the programing language they are
written in) to SAL Scripts and all the other libraries.

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

9

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

Develop

Git Server Docker Server

Jenkins

Nexus Server

Puppet

Node 1 Node 2 Node 3 ... Node n

Figure 5: Diagram outlining the software deployment strategy.

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

10

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

As one can see from Fig. 5, the main end solution to the deployment strategy is the use of
Puppet. Puppet is an open source systems management tool for centralized and automated
configurationmanagement. Themain idea behind this service is that it is possible to describe
the system architecture (e.g. how the ”system should be”) in a configuration file. Then the
server is capable of configuring each node with the appropriate software.

The choice of a ”configuration management” or ”deployment system” (e.g. Puppet) still leaves
open the question of how the software is packaged. One of the largest growing and broadly
used industry-standard solutions in use for distributed systems like the LSST, is Docker. Docker
is a container solution for software deployment, which packs code and all its dependencies
into a lightweight virtual machine-like environment. It also runs quickly and reliably from one
computing environment to another.

Development is the first stage of the process and is where code is either created (e.g. new
CSCs, new scripts being developed, etc) or modified (e.g. bug fixes, improvements, etc). Once
development is completed and the software is tested and validated it goes to the Git Server.
At this stage, a Docker imagemay also be created and stored in the Docker Server. Once this is
completed a Jenkins build is triggered. For the build, Jenkins will pull the software, along with
all its dependencies, build and run unit and integration tests. If all tests passes, the software is
then packed by Jenkins; which may be a new Docker image with the new version of the code,
an RPM package or some other package method that can be used by Puppet. The software
package is then sent to the Nexus Server.

In some cases, the resulting Docker image to contain the software may exceed Jenkins build
size limit, and it is not capable of creating images for testing and deployment to the Nexus
Server. In these cases, the developer creates the Docker image and place it in the Docker
Server. Jenkins will pull the Docker image, start it locally and run the unit and integrations
tests. If the test passes, Jenkins pushes the image to the Nexus Server.

Once the final version of the software is packed and stored in the Nexus Server, Puppet can
be instructed to update the software on a specific node (or nodes).

A References

References

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

11

Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
Control Software Architecture LSE-150 Latest Revision 2019-02-25

B Acronyms used in this document

Acronym Description
AIV Assembly, Integration, and Verification
API Application Programming Interface
AT Auxiliary Telescope
ATCS Auxiliary Telescope Control System
C Specific programming language (also called ANSI-C)
CCD Charge-Coupled Device
CI Continuous Integration
CSC Controlable SAL Component
DIMM Differential Image Motion Monitor
DM Data Management
DMCS Data Management Control System
EFD Engineering Facilities Database
IP Internet Protocol
LOVE LSST Operations Visualization Environment
LSE LSST Systems Engineering (Document Handle)
LSST Large Synoptic Survey Telescope
M1M3 Primary/Tertiary mirror
M2 Secondary mirror
MT Main Telescope
OCS Observatory Control System
RPM RPM Package Manager
SAL Services Access Layer
TCS Telescope Control System
TS Test Specification
TSS Telescope and Site Software
XML eXtensible Markup Language

DRAFT NOT YET APPROVED – The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. – DRAFT NOT YET APPROVED

12

	Introduction
	System Architecture
	SalObj - Python and scripting
	Hardware interface components
	Pure software components
	Configuration Management

	Observatory Control System
	The ScriptQueue component
	The Watcher
	High level Control Systems

	Software Deployment Strategy
	References
	Acronyms used in this document

