L

LARGE SYNOPTIC SURVEY TELESCOPE

Large Synoptic Survey Telescope (LSST)
Telescope & Site

Control Software Architecture

Tiago Ribeiro, William O’Mullane, Tim Axelrod, Dave Mills
LSE-150

Latest Revision: 2019-02-04

Draft Revision NOT YET Approved - This LSST document has been approved as a Content-Controlled
Document. Its contents are subject to configuration control and may not be changed, altered,
or their provisions waived without prior approval. If this document is changed or superseded,
the new document will retain the Handle designation shown above. The control is on the most
recent digital document with this Handle in the LSST digital archive and not printed versions. -

Draft Revision NOT YET Approved

Abstract

TSS Architecture and approach.

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04
Change Record
Version | Date Description Owner name
1 2012-12-14 V1 German Schumacher
2019-01-20 Unreleased. William O'Mullane, Tim
Axelrod
2019-02-01 Unreleased. Tiago Ribeiro

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

Contents
1 Introduction 1
P System Architecture 1
2.1 Salobj- Python and SCripting o v o v vt e e e e 4
D.2 Hardware interface components oo v v v e 5
2.3 Pure software COMpoNenty o v v v oo 5
2.3.1 The ScriptQUeue COMPONENT . . . v v v v e e e e e e e e e 6
R.3.2 Control Systemso 6
.33 The WatChen oo o 8
|2.4 Configuration Managementl 9
D.5 Software Deployment Strategyl v v v v v e 11
A References 11
B Acronyms used in this document 1

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

Control Software Architecture

1 Introduction

The LSST Control Software contains the overall control aspects of the survey and the telescope
including the computers, network, communication and software infrastructure. It contains
all work required to design, code, test and integrate, in the lab and in the field, the high level
coordination software.

2 System Architecture

The LSST control system is based on a reactive data-driven actor-based architecture that uses
a multi cast Data Distribution Service (DDS) messaging protocol middleware. A high level view
of this architecture is given in Figure E| where each box corresponds to a component of the
system (not all components are displayed here).

The LSST System Architecture is comprised mainly of;

+ The Service Abstraction Layer (SALEl) communication middleware. Based on the DDS
protocol, it provides interfaces for all the project adopted programming languages (Lab-
View, C++, Java and Python).

+ Engineering and Facility Database (EFD).

* SAL-aware reactive components, a.k.a Commandable SAL Components (CSCs).

LSST Operators Visualization Environment (LOVE).

The SAL middleware is the backbone of the LSST system architecture. It implements three
distinct types of messages; Commands, Events and Telemetry, with distinct purposes. Com-
mands are sent to a specific component, which must acknowledge its receipt and perform
some action. In general, the receiving component will be the only entity listening for the com-
mands it accepts. Events and Telemetry are messages broadcast by components to the mid-
dleware and are available to any entity on the system to receive. The distinction between

"https://docushare.lsstcorp.org/docushare/dsweb/Get/Document-21527/

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

1

https://docushare.lsstcorp.org/docushare/dsweb/Get/Document-21527/

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04
LSST CONTROL ARCHITECTURE 557
ocs ccs DMS SN
— : DDS Communications EFD Interface Interface Dets
: NON DDS Communications \Sintectace

r
Wavefront J

o - . . - . ol o .
ocs ocs ocs ocs ocs ocs 0ocs W ‘ ocs
Application Scheduler Operator Monitor Telemetry Mainten. Sequencer | Remote Interface

l | l | T I | |

DDS COMMUNICATIONS MIDDLEWARE (Commands, Telemetry, Events)

Tes Tcs Tes Mim3 Rot/Hex Enclosu Environ.
[Appli:ltionJ [Kemel J [Operator J (c """"’"J { co ““] { Controller [Co tmll [e } [Controller J [Controler } [Controller J

c
2 . Newmrk
c"f“"“ Auxiliary Fo— evlce Device Devl ﬁevlu
Guider Telescope < c;: trol Control Control ‘\c ntr nl
Interface %

ll.C
Network

FIGURE 1: High Level Architecture Diagram

Events and Telemetry is that the former receives a higher priority by the message passing
systems.

The EFD is responsible for capturing all SAL messages broadcasts to the middleware (including
Commands, Events and Telemetry) and storing that information into a database.

CSCs are the main actors of the LSST system architecture. They are responsible for managing
the incoming traffic of data and take appropriate actions, controlling hardware (e.g. M1M3,
M2, Mount Controller, etc in Fig. E|), software (e.g. Optics Controller Reconstructor, DMCS
Interface, etc in Fig. E|) or even other CSCs (e.g. Script Queue, TCS, ATCS, OCS, etc in Fig. m).

LOVE is responsible for capturing SAL messages and displaying them in a useful way for gen-
eral users, providing some basic interface to query and analyze data from the EFD and an
interface to issue some pre-defined commands to a set of components.

One of the fundamental parts of SAL is to provide a low-level API for publishing and subscrib-
ing to the middleware. These APIs are generated for each component independently, based
on pre-defined interfaces. On top of those low level APIs, developers have access two higher
level set of frameworks; Python SaIObjE library and the LabView component template. No
higher level framework is supported for implementation in Java or C++.

Overall, the system architecture can be divided into three main namespaces; Observatory,

’https://github.com/lsst-ts/ts_salobj

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

2

https://github.com/lsst-ts/ts_salobj

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

Main Telescope (MT) and Auxiliary Telescope (AT). The Observatory is the highest level and

encapsulates both the Main Telescope, Auxiliary Telescope and global components such as

the weather station, DIMM, etc. The complete set of components that belong to each of these
. . n

namespaces can be seen in Figs. ??, and E

FIGURE 2: Complete set of AT CSCs

T

FIGURE 3: Complete set of MT CSCs

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

3

557

—— | ARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

2.1 SalObj - Python and scripting

SalObjis a Python library provides a pythonic and object-oriented interface to create CSCs and
Scripts that can be executed by the script queue component (see Sect.). The library de-
fines two sets of base classes that are mirror to each other, Remote and Controller. A Remote
will send commands to and receive telemetry and events from a specific component whereas
a Controller will receive commands and publish telemetry and events. In this framework, a
CSC is a specialized Controller that is configure to perform some basic actions by default. A
high level diagram is provided in Figure E|

Internally, SalObj uses the python library asyncioE to handle the inherently asynchronous na-
ture of the SAL messaging system.

FIGURE 4: SalObj python scheme for CSCs

3https://docs.python.org/3/1library/asyncio.html

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

4

https://docs.python.org/3/library/asyncio.html

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

2.2 Hardware interface components

Probably the most critical or sensitive components of the LSST system architecture are those
that directly control hardware. Some of these components are going to be delivered directly
by external vendors, such as those that will control the main telescope mount (MTMount)
and the main telescope secondary mirror (MTM2). There are also those that are developed in
house, e.g. the main telescope MTM3 (MTM1M3).

In some special cases it is highly desirable that the control software and hardware are part
of an integrated system. For those systems, the components are developed either using the
LabView component template, which is part of the LSST infrastructure or in C++ developed
using the low level SAL API.

In most other cases, the hardware comes with a control software that can be easily interfaced
by using standard protocols (such as TCP/IP or serial ports), and there is no special need
for the component software to reside close to the low level hardware controller. In those
cases, the components are written in Python using the SalObj library which is also part of the
LSST infrastructure. By writing these components in Python we allow a high level of flexibility
and maintainability of the software components and considerably decrease the development
cycle.

2.3 Pure software components

In the LSST System Architecture there are a number of components that, even tough they
do not control hardware directly, they dictate what hardware components are supposed to
do. Some of these components are responsible for heavy computational routines, such as
the Optical Feedback Control (MTOFC), which is responsible for applying corrections to both
M1M3, M2 and hexapod components for the main telescope or even the Scheduler, which is
responsible for processing the an entire set of observatory telemetry information and history
of observations to compute an observing queue.

These pure software components are mostly written in Python using SalObj library. There are
three special cases of these components that form the basis of the LSST System Architecture;
the Script Queue (Sect.), Control Systems (Sect.) and the Watcher (Sect.). To-
gether, they provide the tools needed for integration, commissioning and operation of the
observatory.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

5

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04
2.3.1 The ScriptQueue component

There are a number of different ways users can interact with components in the LSST system.
For instance, one could easily use the SAL generated APl in any of the supported languages to
send commands directly to a single or multiple components. It is also possible to use SalObj
Remotes to write Python scripts that would command different components to accomplish a
specified task. Not to mention that LOVE itself provides a customizable interface for users to
interact with components.

During commissioning and operations the LSST system will require a high degree of coordi-
nation between different crews (different daytime and nighttime shifts, for instance), not to
mention the increasing number of available components and level of complexity as the system
ramps up. In order to manager those issues, the LSST control system contains a specialized
script queuing component, a.k.a. the Scrithueue@.

The ScriptQueue defines an interface for developing scripts in general, and provides a basic
class that can be used to develop Python scripts. As Python programs, these scripts have ac-
cess to all Python functionality, both from the native Python 3 language and through imported
modules (including asyncio to manage concurrent activities or libraries from the DM stack).
In particular, a Script has access to all the system components using SalObj Remotes (Sec-
tion) . Although Python is the only language officially supported, scripts can be written in
any SAL-supported language. As long as they follow the interface defined by the ScriptQueue
component, it should be possible to execute them.

2.3.2 Control Systems

In such an environment it is not immediately clear that a traditional hierarchical design is nec-
essary or desirable. A completely flat architecture initially seems completely workable and
certainly sufficient during AIT and early commissioning. For example, consider a Script which
commands and sequences the telescope subsystems to move to the next field to be observed,
take an exposure, and read out that exposure. The Script can directly control each of those
subsystems and maintain control of the sequencing using asyncio. Furthermore, the com-
plexity of the Script can be managed through normal modular programming techniques, in
which subsystem functionality is implemented through Python objects imported in modules.

Though we could have a flat system based on ScriptQueue (Section) there are two com-

“https://github.com/lsst-ts/ts_scriptgueue

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

6

https://github.com/lsst-ts/ts_scriptqueue

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

pelling reason to retain at least a top level OCS which has overall responsibility for all subsys-
tems. The first reason is rooted in the limited lifetime of each Script, which has an execution
thread that begins and ends over a duration short compared to the up time of the telescope
system. When a Script is instantiated, it has no immediate knowledge of the state of the tele-
scope system as a whole, or the state of individual subsystems. It needs such knowledge,
because many actions, e.g. moving the telescope, require the telescope subsystems to be
in particular states. The Script can, of course, assemble the required knowledge, by using
SAL to obtain the state information of all relevant subsystems, but doing so imposes unnec-
essary startup overheads for Scripts. It is far more efficient, not to say reliable, for a single
subsystem to be continuously responsible for maintaining knowledge of the overall state of
the observatory (observatory states are discussed in more detail below).

The second, related, reason is that the operator needs:

1. to maintain continuous knowledge of the state of the observatory independent of Script
execution, and

2. to be able to command the observatory to change its overall state.

An excellent example of the latter requirement is from the LOVE requirements document,
LTS-807:

Requirement ID: LOVE-REQ-0078

Requirement Title: Emergency Close

Specification: The LOVE shall provide a single control command labeled "Emer-
gency Close” of the telescopes.

Certainly one could imagine creating a Script to execute Emergency Close, but to use it would
require that any currently running Script be aborted, and the script to be placed on top of the
queue which may create a dangerous overhead.

By adding high level Control Systems that are responsible for monitoring the heath and state
of a group of components, it is possible to increase overall system responsiveness, simplify
script development cycle and so on. This is accomplished by the use of a Generic Control
System (GCS) component.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

7

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

A GCS defines a namespace which contains a group of component to be supervised. The list of
components that are part of a Control System group is a configurable parameter. The Control
System component still operates normally, taking the appropriate actions, if one or more of
the components in its group is missing, unresponsive or in a fault state. The Control System
manages and oversee the state of each component in its group.

For each component, there are a set of basic actions that a Control System is capable of per-
forming and it is possible to expand and customize these actions for a specific component
(or group of components). An example of a default action is to bring components up to an
enable state, configuring it in the process. The decision to bring a component up can be ei-
ther following a request to use the component by an external agent or client (e.g. a script), or
given some external constraint (e.g. the night is about to start so the Control System enables
every component, or a subset of components, in its group).

The ability to define customized actions is an important feature of Control System. It enables
one to port actions that are developed inside scripts to control a group of components into
a high level command that is performed by the Control System. Since the Control System
monitors the state and health of the components inside its namespace and has readily access
to the commands they accept, it is possible to execute these high level commands at a faster
rate than that achieved from a script alone.

Overall the combination of the ScriptQueue and GCS gives the LSST system a high level of
flexibility, speed and reliability.

2.3.3 The Watcher

The Watcher is a component that monitors the other SAL components and output alarmsin a
standard way that LOVE can present to operators. The Watcher is designed in such a way that
alarm rules are easy to write and easy to understand. The rules are likely to evolve rapidly
during commissioning and slowly after that.

Examples of alarms published by the Watcher are;

+ Dangerous weather, such as rain or high humidity.
+ A SAL component is unavailable: not enabled or heartbeat is missing.

+ Actuator malfunction, such as axis motors out of closed loop, filter changer stuck, an

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

8

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

actuator hits a limit.

+ CCD temperatures or pressures out of range.

A typical life cycle of an alarm:

1. Azimuth goes out of range so the controller halts motion. The Watcher reports this as
an alarm with severity=serious. LOVE displays it.

2. An operator acknowledges the alarm to the Watcher, but the axis is still out of range.
The Watcher outputs a new version of the alarm that includes the information that the
alarm has been acknowledged. LOVE displays the alert in a way that looks less urgent
(e.g. is grayed out). The alarm has been acknowledged but the condition is still current.

3. An operator fixes the problem and the controller reports this. The Watcher reports the
alarm one last time with severity "OK". LOVE removes the alarm from the display.

A typical life cycle of a transient alarm:

1. The azimuth drive temporarily draws too much current; the component reports this but
manages to keep the axis moving (presumably with temporarily degraded accuracy).
The Watcher reports this as an alarm with severity=serious. LOVE displays it.

2. The drive current is within normal range again before an operator has time to acknowl-
edge the alarm. The Watcher outputs a new version of the alarm that says the condition
is now OK but the alarm has not yet been acknowledged (a "stale alarm”). LOVE still
displays the alarm, but in different way to indicate that the problem is gone.

3. Anoperator acknowledges the alarm to the Watcher. The Watcher outputs a new version
of the alarm with severity "OK” and acknowledged=True. LOVE removes the alarm from
the display.

2.4 Configuration Management

During commissioning and operations, LSST will have a large number of running software
components under the purview of DM, Camera, and TSS. In general, the behavior of each
of these components is modifiable through configuration information which is read in during

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

9

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

startup of the component, or possibly changed while the component is running. Careful man-
agement of this configuration information is crucial to reliable functioning of the Observatory,
and to the analysis of its data products.

In this context, git is the solution adopted to store and manage different sets of configurations
and different versions of configurations. Git is already a standard in industry as a software
management tool and has becoming increasingly used to manage general documents and
files as well, not to mention that it is already readily available and broadly adopted by the
project. Therefore, each component must establish a separate git repository to store its
configuration files.

These configuration repositories will be hosted on a configuration server at the summit so
that, even if communication with the base or the internet is not available, components still
maintain access to their configuration repositories. Different configuration sets (or labels)
are stored in separate branches, and tags can be created to specify immutable sets.

Several options for configuration file format, and their associated software tools, have been
considered. Each of the available options naturally has its strengths and weaknesses, and
none stand out as being particularly useful for all LSST use cases (and/or available for all the
project adopted programming languages).

For components written in Python, pex_config is the adopted solution. As an overview of
pex_config, here are a few snippets from the library documentation:

The 1sst.pex.config module provides a configuration system for the LSST Sci-
ence Pipelines.... Configurations are hierarchical trees of parameters used to con-
trol the execution of code.... Configurations are stored in instances of a "config”
object, which are subclasses of the Config class. Different configuration sets are
associated with different subclasses of Config. For example, in the task framework
each task is associated with a specific Config subclass.... Configuration objects have
fields that are discrete settings. These fields are attributes on config classes.

In the TSS context the "task” above becomes a "CSC".

Isst.pex.config.Config class has methods save() and load() which persist and restore class
instances from files, which just contain Python code. Note that because these files are Python
code, it is easy to include documentation within the files.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

10

557

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture LSE-150 Latest Revision 2019-02-04

The validation of a Config file is handled by the __init__() method of the Config subclass
which can check, for example, whether parameter values comply with range limits, or whether
all required parameters are specified.

In this framework, the configuration schema (or definition) will be developed and stored in the
CSC codebase repository (using pex_config). As already stated above, a separate repository
hosts the actual configuration files which, in the case of pex_config, only contains changes to
the default set of values.

2.5 Software Deployment Strategy

SAL will be packed as RPMs...

Those components that can be containerized will be packed as Docker containers + Docker
hub server at the summit.

What about those that can't? Examples? M1M3? Things that are done in LabView? What
about Compact Reconfigurable Input/Output (CRIO) System? What about vendor supplied
software?

Puppet can deploy Docker containers. What about the others?
What about the EFD?

Use RPM + Docker + Puppet ...

A References

References

[1] [LTS-807], Serio, A., 2018, LSST Operations Viszualization Enviroment (LOVE) Requirements ,
LTS-807, URL https://1s.st/LTS-807

B Acronyms used in this document

Acronym | Description

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

11

https://ls.st/LTS-807

55T

LARGE SYNOPTIC SURVEY TELESCOPE

Control Software Architecture

LSE-150

Latest Revision 2019-02-04

AIT Assembly, Integration, and Test

API Application Programming Interface

AT Auxiliary Telescope

ATCS Auxiliary Telescope Control System

C Specific programming language (also called ANSI-C)
CCD Charge-Coupled Device

CRIO Compact Reconfigurable Input/Output

CSC Controlable SAL Component

DIMM Differential Image Motion Monitor

DM Data Management

DMCS Data Management Control System

EFD Engineering Facilities Database

GCS Generic Control System

ID Identifier

IP Internet Protocol

LOVE LSST Operations Visualization Environment
LSE LSST Systems Engineering (Document Handle)
LSST Large Synoptic Survey Telescope

LTS LSS Telescope and Site (Document handle)
M1M3 Primary/Tertiary mirror

M2 Secondary mirror

MT Main Telescope

OCS Observatory Control System

RPM RPM Package Manager

SAL Services Access Layer

TCS Telescope Control System

TS Test Specification

TSS Telescope and Site Software

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control and may
not be changed, altered, or their provisions waived without prior approval. - DRAFT NOT YET APPROVED

12

	Introduction
	System Architecture
	SalObj - Python and scripting
	Hardware interface components
	Pure software components
	The ScriptQueue component
	Control Systems
	The Watcher

	Configuration Management
	Software Deployment Strategy

	References
	Acronyms used in this document

